Stage 7
 PROMPT sheet

S7/1 Equivalent fractions, decimals \& percentages

- Percentage to decimal to fraction
$27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction
$0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage $\frac{4}{5}=\frac{80}{100}=80 \%=0.8$

Change to 100
$\frac{3}{8}=3 \div 8=0.375=37.5 \%$

S7/2 Increase/Decrease by a percentage

- To increase $£ 12$ by 5%
$=1.05 \times £ 12 \quad(100 \%+5 \%=105 \%)$ OR
$=£ 12+5 \%$ of $£ 12$
- To decrease £50 by 15%
$=0.85 \times £ 50 \quad(100 \%-15 \%=85 \%)$
OR
$=£ 50-15 \%$ of $£ 50$

S7/3
Divide a quantity into a given ratio
~ Put headings
~Find how many shares in total
~ Amount \div no. shares = value of one share
e.g. Divide $£ 240$ between A and B in ratio of $3: 5$

$$
\begin{aligned}
& A: B \\
& 3: 5=8 \text { shares }
\end{aligned}
$$

One share $=£ 240 \div 8=£ 30$
$A=3$ shares $=3 \times £ 30=£ 90$
$B=5$ shares $=5 \times £ 30=£ 150$

S7/4 Use proportional reasoning

- Change an amount in proportion
e.g. If 6 books cost $£ 22.50$

Find the cost of 11. (find cost of 1 first)

- Change amounts to compare
e.g. A pack of 5 pens cost $£ 6.10$

A pack of 8 pens cost $£ 9.20$
Which is the best buy? (find cost of 40 of each)

S7/5 Calculate with fractions

- Add \& subtract fractions
~Make the denominators the same
e.g. $\frac{1}{5}+\frac{7}{10}$

$$
=\frac{2}{10}+\frac{7}{10}
$$

$$
=\frac{9}{10}
$$

$$
\begin{aligned}
& \frac{4}{5}- \\
= & \frac{12}{15}-\frac{10}{15} \\
= & \frac{2}{15}
\end{aligned}
$$

- Multiply fractions
~Write 7 as $\frac{7}{1}$
~Multiply numerators \& denominators
e.g. $5 \times \frac{2}{3}$

$$
\begin{aligned}
& =\frac{5}{1} \times \frac{2}{3} \\
& =\frac{10}{3}=3 \frac{1}{3}
\end{aligned}
$$

$\frac{4}{5} \times \frac{2}{3}$
$=\frac{8}{15}$

- Divide fractions
~Write 7 as $\frac{7}{1}$
~Flip numerator \& denominator after \div ~Multiply numerators \& denominators
e.g. $5 \div \frac{2}{3}$

$$
=\frac{5}{1} \times \frac{3}{2}
$$

$$
=\frac{15}{2}=7 \frac{1}{2}
$$

$$
\begin{aligned}
& \frac{4}{5} \div \frac{2}{3} \\
= & \frac{4}{5} \times \frac{3}{2} \\
= & \frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}
\end{aligned}
$$

- Calculate fraction of quantity To find $\frac{4}{5}$ of a quantity $\div 5 \times 4$
e.g. $\frac{4}{5}$ of $£ 20=20 \div 5 \times 4=£ 16$

S7/6 Solve an equation by trial \& improvement method

~ Find 2 consecutive numbers that the solution lies between
~ Then choose the half way number
~ Keep making improvements until the required accuracy achieved
e.g. To solve $x^{3}-3 x=6$ (correct to 1 dp)

Try $x=$	$x^{3}-3 x$	Comment
2	$2^{3}-2 \times 2=4$	Too small
3	$3^{3}-3 \times 3=28$	Too big
2.5	$2.5^{3}-3 \times 2.5=8.125$	Too big
2.3	$2.3^{3}-3 \times 2.3=5.267$	Too small
2.4	$2.4^{3}-3 \times 2.4=6.624$	Too big
2.35	$2.35^{3}-3 \times 2.35=5.928$	Too small

Solution is nearer 2.4 than 2.3
So $x=2.4$ (correct to 1 dp)

S7/7 Solve linear equations

~Multiply out brackets firs \dagger
\sim If there are letters on both sides get rid of the smaller first
~Do the same to both sides
e.g.

To solve $5(x-3)=3 x+7$ (expand bracket)
$5 x-15=3 x+7(-3 x$ from both sides)
$2 x-15=\quad+7$ (+15 to each side)
$\frac{2 x}{}=\frac{22}{(} \div 2$ both sides $)$ 22 $x=11$

S7/8 Sequences

- Understand position and term

Position	1	2	3	4
Term	3	7	11	15

+4
Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position $1 \times 4-1=3$)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=6$
$2^{\text {nd }}$ term ($n=2$) $=5 \times 2+1=11$
$3^{\text {rd }}$ term $(n=3)=5 \times 3+1=16$

S7/9 Plot graphs of linear equations

~Substitute values of x into the equation \sim Plot the points in pencil
\sim Join the points with a ruler and pencil
\sim They should be in a straight line
e.g. $y=3 x-1$

x	-2	-1	0	1	2
y	-7	-4	-1	2	5

S7/10\&11 Real life graphs Some examples

- $A B$ shows the journey away
- BC shows no movement
- CD shows journey back
- The steeper the line the higher the speed

Matching graphs to statements

The price of oil, which was rising
steadily at the beginning of the year is now beginning to tall.

Unemployment has been falling steadily over the last year.

The birth rate was falling rapidly but is now steady.

House prices, which were rising slowly, are now starting to rise rapidly.
(ब)

S7/12 Quadrilaterals \& their properties

- Know the name of each quadrilateral
- Does it have line and/or rotational symmetry?
- Are the diagonals equal or bisect each other?
- Does it have parallel sides?
- Are angles equal or opposites equal?
- Are the sides equal or opposites equal?

S7/13\&14\&15 Angles

- Angles \& parallel lines

\leftarrow			
F-shape Corresponding angles are equal	Z-shape Alternate angles are equal		C or U shape
:---			
Interior			
add up to 180°			

- Angles and straight lines

- Angles of polygons
~Polygons have straight sides
\sim Polygons are named by the number sides

$$
\begin{aligned}
& 3 \text { sides - triangle } \\
& 4 \text { sides - quadrilateral } \\
& 5 \text { sides - pentagon } \\
& 6 \text { sides - hexagon } \\
& 7 \text { sides - heptagon } \\
& 8 \text { sides - octagon } \\
& 9 \text { sides - nonagon } \\
& 10 \text { sides - decagon }
\end{aligned}
$$

~With ALL sides equal they are called REGULAR
\sim Sum of exterior angles is always 360°

\sim the interior \& exterior angle add up to 180°
~ the interior angles add up to:
Triangle $=1 \times 180^{\circ}=180^{\circ}$
Quadrialteral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon = $4 \times 180^{\circ}=720^{\circ}$ etc

S7/16 2D representations of 3D shapes

- 3D drawing on isometric paper (notice NO horizontal lines)

- 3 views of a 3D shape Plan view

 side-view

Side view

- Nets

Cube

Cuboid

Front elevation

Plan view

 pyramid

S7/17 Enlarge a shape

You need to know:

- Centre
e.g. $(5,4)$
- Scale factor e.g. 2

S7/18 Translate \& Reflect a shape

- Translate a shape

You need to know:

- Vector from A to B e.g. $\binom{3}{-4} \begin{aligned} & \text { Right } \\ & \text { Down }\end{aligned}$

Notice:

- The new shape stays the same way up
- The new shape is the same size
- Reflect a shape

You need to know:

- Angle e.g. 90°
- Direction e.g. clockwise
- Centre of rotation e.g. $(0,0)$

USE TRACING PAPER TO HELP

S7/19 Constructions

- Perpendicular bisector of a line Draw a straight line through where the arcs cross above and below.

- Bisector of a line

Draw a line from where the arcs cross to the vertex of the angle

- Construct triangle given 3 sides (Use a pair of compasses Leave the arcs on)

- Construct triangle given angles (Use a protractor)

S7/20 Use formulae

- Area of circle

Area of circle $=\pi \times r^{2}$
$=\pi \times r^{2}$
$=\pi \times 5^{2}$
$=78.5 \mathrm{~cm}^{2}$

- Circumference of circle Area of circle $=\pi \times \mathrm{d}$

$$
\begin{aligned}
& =\pi \times 8 \\
& =25.1 \mathrm{~cm}
\end{aligned}
$$

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$

- Surface area of cuboid
$\left.\begin{array}{l}\text { Front }=5 \times 3=15 \\ \text { Back }=5 \times 3=15 \\ \text { Top }=5 \times 2=10 \\ \left.\begin{array}{l}\text { Bottom } \\ \text { Side }\end{array}\right\}=3 \times 2=10 \\ \text { Side }=3 \times 2=6\end{array}\right\}$ Total Surface Area $=62 \mathrm{~cm}^{2}$

S7/23 Presentation of data

- Construct a pie chart

Transport	Frequency	Angle
Car	13×9	117°
Bus	4×9	36°
Walk	15×9	135
Cycle	8×9	72

Total frequency $=40$

$$
360^{\circ} \div 40=9^{\circ} \text { per person }
$$

- Construct a frequency polygon (points plotted at the midpoint of the bars)

Frequency

- Construct a scatter graph

Length of shoe lace (cm)

S7/24 Find all possible outcomes

Outcomes can be presented:

- In a list
- In a table or sample space

Example of a sample space

To show all possible outcomes from spinning_-_- . spinner and rolling a dice

		Dice					
	+	1	2	3	4	5	6
$\begin{aligned} & \stackrel{\searrow}{凶} \\ & \text { © } \\ & \text { in } \end{aligned}$	1	2	3	4	5	6	7
	2	3					
	3	4					
	4	5					

S7/25 Sum of mutually exclusive outcomes

 $=1$- If 2 outcomes cannot occur together, They are mutually exclusive
- If 2 outcomes A and B are mutually exclusive
$P(A)+p(B)=1$
- If 3 outcomes $A B$ and C are mutually exclusive
$P(A)+p(B)+p(C)=1$
e.g. If outcomes A, B and C are mutually exclusive and
$p(A)=0.47$
$p(B)=0.31$
$p(C)=1-(0.47+0.31)$
$=1-0.78$
$=\underline{0.22}$

