Stage 6 PROMPT sheet

6/1 Place value in numbers to 10million

The position of the digit gives its size

1	Ten millions
2	Millions
3	Hundred thousands
4	Ten thousands
5	thousands
6	hundreds
7	tens
8	units

Example

The value of the digit '1' is 10 000 000
The value of the digit '2' is 2 000 000
The value of the digit '3' is 300 000
The value of the digit '4' is 40 000

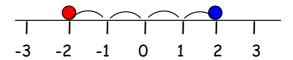
6/1 Round whole numbers

Example 1- Round 342 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 2

4 or less? YES - leave 'round off digit' unchanged - Replace following digits with zeros

ANSWER - 340 000


Example 2- Round 345 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

5 or more? YES - add one to 'round off digit'
- Replace following digits with zeros

<u>ANSWER - 350 000</u>

6/2 Negative numbers

The difference between 2 and -2 = 4 (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- 8 + 2 is the same as 8 2 = 6
- 8 + 2 is the same as 8 2 = 6
- 8 2 is the same as 8 + 2 = 10

6/3 Multiply numbers & estimate to check

6/3 Use estimates to check calculations

152 x 34 ≈150 x 30 ≈4500

≈ is the symbol for 'roughly equals'

6/3 <u>Divide numbers & estimate to check</u>

With a remainder also expressed as a fraction

e.g.
$$4928 \div 32$$

$$\begin{array}{r}
028\\15)432\\
-30\\\hline
132\\
-120\\\hline
12
\end{array}$$
ANSWER - $432 \div 15 = 28 \text{ r } 12$

$$= 28\frac{12}{15}$$

6/3 continued

With a remainder expressed as a decimal

$$\begin{array}{c}
0 & 2 & 8 & . & 8 \\
15 & 4 & 3 & 2 & . & 0 \\
 & -3 & 0 & \downarrow \\
\hline
1 & 3 & 2 & . & 12 & 0 \\
-1 & 2 & 0 & & 12 & .
\end{array}$$

6/3 Use estimates to check calculations

6/4 Factors, multiples & primes

- **FACTORS** are what divides exactly into a
- e.g. Factors of 12 are:

1	12
2	6
3	1

Factors of 18 are:

1	18
2	9
3	6

The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6

PRIME NUMBERS have only TWO factors

e.g. Factors of 7 are:

Factors of 13 are

So 7 and 13 are both prime numbers

• MULTIPLES are the times table answers

e.g. Multiples of 5 are: 5 10 15 **20** 25

Multiples of 4 are: 4 8 12 16 20

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket

Indices

Divide

Multiply Do these in the order they appear

Add

Do these in the order they appear

e.g.
$$3 + \frac{4 \times 6}{1} = 5 = 22$$

first

(2 + 1) × 3 = 9

first

6/6 Addition

Line up the digits in the correct columns

6/6 Subtraction

• Line up the digits in the correct columns

e.g.
$$645 - 427$$
 H T U 6^{3} /4 1 5 $\frac{4}{2} \frac{7}{1} \frac{7$

6/7 Equivalent fractions

To simplify a fraction

Example: $\frac{27}{36}$

First find the highest common factor of the numerator and denominator - which is 9, then divide

$$\frac{27^{\div 9}}{36 \div 9} = \frac{3}{4}$$

o To change fractions to the same denominator

Example: $\frac{3}{4}$ and $\frac{2}{3}$

Find the highest common multiple of the denominators - which is 12, then multiply:

$$\frac{3^{x3}}{4_{x3}} = \frac{9}{12}$$
 and $\frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

Make the denominators the same

e.g. $\frac{1}{5} + \frac{7}{10}$	e.g. $\frac{4}{5} - \frac{2}{3}$
$=\frac{2}{10} + \frac{7}{10}$	$= \frac{12}{15} - \frac{10}{15}$
$= \frac{3}{10}$	= $\frac{2}{15}$ Do <u>not</u> add denominators

6/9 Multiply fractions

- \circ Write 5 as $\frac{5}{1}$
- o Multiply numerators & denominators

e.g.
$$5 \times \frac{2}{3}$$

 $= \frac{5}{1} \times \frac{2}{3}$
 $= \frac{10}{3} = 3\frac{1}{3}$
e.g. $\frac{4}{5} \times \frac{2}{3}$
 $= \frac{8}{15}$

6/9 <u>Divide fractions</u>

- \circ Write 5 as $\frac{5}{1}$
- o Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g.
$$\frac{2}{3} \div 5$$
 e.g. $\frac{4}{5} \div \frac{2}{3}$ $= \frac{3}{2} \times \frac{1}{5}$ $= \frac{12}{10} = 1\frac{1}{5}$

6	0/10 Multiply/divide decimals by 10, 100								
	thousands	hundreds	tens	units	•	tenths	hundredths	thousandths	
	4	3	5	2	•	6	1	7	

• To multiply by 10, move each digit one place to the left

e.g. $35.6 \times 10 = 356$

Hundreds	Tens	Units	•	tenths
	_ 3	5	•	- 6
3 🔨	5 🖍	6 🖍	•	

 To <u>divide</u> by 10, move each digit one place to the <u>right</u>

Tens	Units	•	tenths	hundredths
3 <	5 5 ;	•	6 /	
	1 3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u> Move the <u>decimal point the opposite way</u>

6/11 Multiply decimals

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

Example: 0.06 x 8 => 6 x 8 => 48 => 0.48

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

Example:
$$6.28 \div 5$$

$$\frac{1 \cdot 2 \cdot 5 \cdot 6}{5 \cdot 6 \cdot 12^{2}8^{3}0}$$

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

$$\frac{1}{10}$$
 = 0.1 = 10%

Percentage to decimal to fraction

27% = 0.27 =
$$\frac{27}{100}$$

7% = 0.07 =
$$\frac{7}{100}$$

70% = 0.7 =
$$\frac{70}{100}$$
 = $\frac{7}{10}$

• Decimal to percentage to fraction

$$0.3 = 30\% = \frac{3}{10}$$

$$0.03 = 3\% = \frac{3}{100}$$

$$0.39 = 39\% = \frac{39}{100}$$

Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$

Change to 100

$$\frac{3}{8}$$
 = 3 ÷ 8 = 8) $3.^{3}0^{6}0^{4}0$ = 0.375 = 37.5%

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$
Cancel by 3

6/13 Fraction of quantity

•
$$\frac{4}{5}$$
 means ÷ 5 x 4

e.g. To find
$$\underline{4}$$
 of £40
5
£40 ÷ 5 x 4 = £40

6/13 Percentage of quantity

Use only

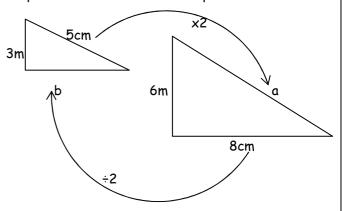
$$\circ$$
 50% - $\frac{1}{2}$

$$\circ$$
 10% - $\frac{1}{10}$

$$\circ$$
 1% - $\frac{1}{100}$

Example: To find 35% of £400

10% = £.40


20% = £80

5% = £20

35% = £140

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor = $6 \div 3 = 2$ Length $a = 5 \times 2 = 10$ cm

Length $b = 8 \div 2 = 4cm$

6/14 Unequal sharing

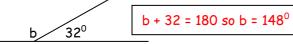
Example- unequal sharing of sweets

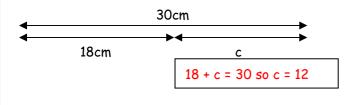
A gets

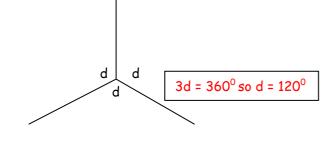
B gets

3 shares

4 shares


=> 3 sweets x4 4 sweets x4 => 12 sweets x4


6/15 <u>Express missing numbers</u> <u>algebraically</u>


An unknown number is given a letter

2a = 12 so a = 6

6/15 Use a word formula

Example: -Time to cook a turkey
Cook for 45min per kg weight
Then a further 45min

For a 6kg turkey, follow the formula:

 $45\min \times 6 + 45\min$

=270min + 45min

=315min

= 5h 15min

6/16 <u>Number sequences</u>

• Understand position and term

Position	1 5	2	3	4
Term	3 ♥	7	11	15

Term to term rule = +4

Position to term rule is x - 4 - 1

+4

(because position $1 \times 4 - 1 = 3$)

 $nth term = n \times 4 - 1 = 4n - 1$

• Generate terms of a sequence

If the nth term is 5n + 1

 1^{st} term $(n=1) = 5 \times 1 + 1 = 6$

 2^{nd} term $(n=2) = 5 \times 2 + 1 = 11$

 3^{rd} term $(n=3) = 5 \times 3 + 1 = 16$

6/17 <u>Possible solutions of a number</u> sentence

Example: x and y are numbers

Rule: x + y = 5

Possible solutions: x = 0 and y = 5

x = 1 and y = 4

x = 2 and y = 3

x = 3 and y = 2

x = 4 and y = 1

x = 5 and y = 0

6/18 <u>Convert units of measure</u> <u>METRIC</u>

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide $(\dot{\cdot})$

UNITS of LENGTH

10mm = 1cm

100cm = 1m

1000m = 1km

UNITS of MASS

1000g = 1kg

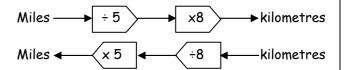
1000kg = 1tonne

UNITS of TIME

60sec = 1 min

60min = 1 hour

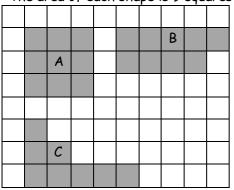
24h = 1 day


365days = 1 year

UNITS of VOLUME 1000ml = 1 litre

100cl = 1litre

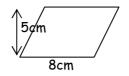
6/19 Convert units of measure METRIC/IMPERIAL


LEARN: 5 miles = 8km

6/20 Perimeter and area of shapes

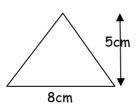
Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares



Perimeter of each shape is different A - 12; B - 14; C - 16

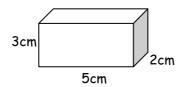
6/21 Area of parallelogram & triangle


Area of parallelogram

Area of parallelogram = $b \times h$ = 8×5 = $40cm^2$

 \circ Area of triangle ($\frac{1}{2}$ a parallelogram)

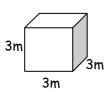
Area of triangle = $\frac{b \times h}{2}$ = $\frac{8 \times 5}{2}$ 20cm²



6/22 Volume

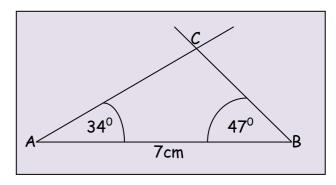
Volume of cuboid

Volume = $1 \times w \times h$ = $5 \times 3 \times 2$

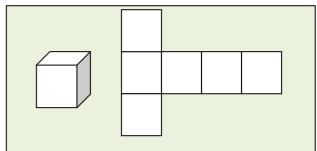

 $= 30 cm^3$

o Volume of cube

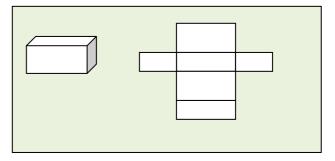
Volume = $1 \times w \times h$ = $3 \times 3 \times 3$


 $= 3 \times 3 \times$ $= 27 \text{m}^3$

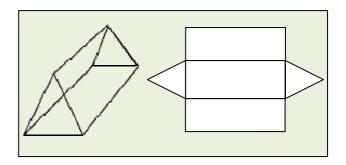
6/23 Construct 2D shapes


Example: Triangle with side and angles given

- o Draw line AB = 7cm
- o Draw angle 340 at point A from line AB
- o Draw angle 47° at point B from line AB
- \circ Extend to intersect the lines at C



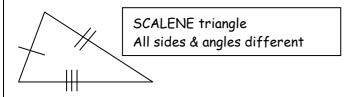
6/23 Construct 3D shapes

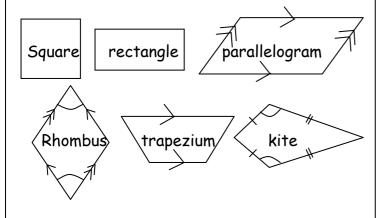

CUBE & its net

CUBOID & its net

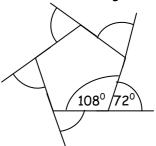
TRIANGULAR PRISM & its net

6/24 Properties of shapes


TRIANGLES - sum of angles = 180°


ISOSCELES triangle
2 equal sides & 2 equal angles

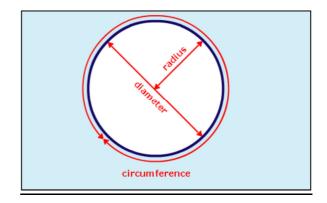
EQUILATERAL triangle 3 equal sides & ALL angles 60°


QUADRILATERALS - sum of angles = 360°

REGULAR POLGONS - all sides the same

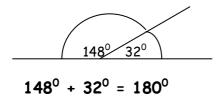
- Polygons have straight sides
- o Polygons are named by the number sides
 - 3 sides triangle
 - 4 sides quadrilateral
 - 5 sides pentagon
 - 6 sides hexagon
 - 7 sides heptagon
 - 8 sides octagon
 - 9 sides nonagon
 - 10 sides decagon

o Sum of exterior angles is always 360°



- \circ interior & exterior angle add up to 180°
- o the interior angles add up to:

Triangle =1 x 180° = 180° Quadrilateral =2 x 180° = 360° Pentagon =3 x 180° = 540° Hexagon =4 x 180° = 720° etc

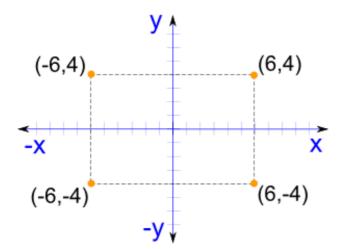

6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. (d = $2 \times r$) or (r = $\frac{1}{2} \times d$)

6/26 Angles and straight lines

 $^{\circ}$ Angles on a straight line add up to 180 $^{\circ}$

 \circ Angles about a point add up to 360°

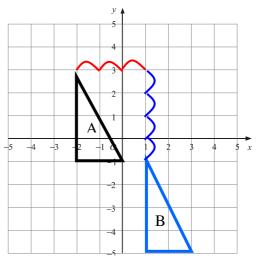


$$146^{\circ} + 90^{\circ} + 124^{\circ} = 360^{\circ}$$

o Vertically opposite angles are equal

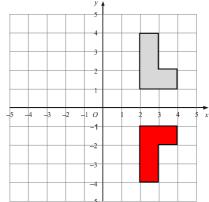
6/27 Position on a co-ordinate grid

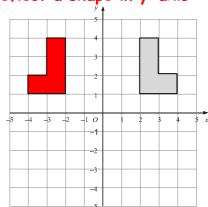
6/28 Transformations


o Translation - A shape moved along a line

Down

Example - Move shape A 3 right & 4 down

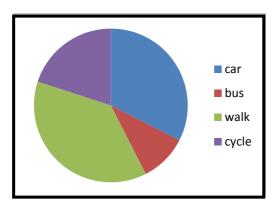

Can also be written as a vector $\begin{pmatrix} 3 \end{pmatrix}$ Right


Notice:

- o The new shape stays the same way up
- o The new shape is the same size

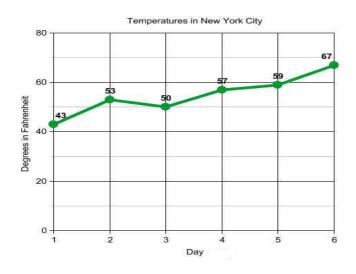
Reflect a shape in x-axis

o Reflect a shape in y-axis



6/29 Graphs

o Pie chart


Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 × 9=36°
Walk	15	15 x 9=135
Cycle	8	8 × 9=72

Total frequency = $\frac{40}{360^{\circ}}$ ÷ 40 = 9° per person

o Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

6/30 The mean

The mean is usually known as the average.

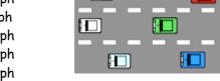
The mean is not a value from the original list.

It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

Car 1 - 66mph


Car 2 - 57mph

Car 3 - 71mph

Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

Mean = <u>66+57+71+54+69+58</u>

6

= <u>375</u>

= 62.5mph

Mean average speed was 62.5mph