

INSTRUCTION MANUAL TO MAKE A DOOREEN

• Building the Circuit
• Amending the code to send a message from the Raspberry Pi to a

Microbit attached by USB
• Creating receiving code on the attached Microbit
• Amending the Microbit code to send a radio message to another

unconnected Microbit
• Creating receiving code on the unattached Microbit
• Designing a box to store Dooreen with Tinkercad
• Checking the Tinkercad design in Netfabb
• 3D printing the Dooreen Box
• Doreen in Action

Building the Circuit
You will need a Raspberry Pi and components to build a sensor circuit.
We already had a CamJam Sensor Edukit but you can purchase one for
£8 from The PiHut and download free worksheets. We used worksheet 5
to build a circuit.

CamJam EduKit Sensors Worksheet Five
Project Passive Infrared Sensor

Description In this project, you will learn how to wire and
program a passive infrared sensor that detects movement near
it.

Equipment Required

 · Your Raspberry Pi  

 · 400 Point Breadboard  

 · Passive Infrared Sensor  

 · 6 x m/f jumper wires  

The Parts  
The Passive Infrared Sensor

 The main component of this circuit is itself another circuit board
that has a PIR, or Passive Infrared sensor on it. These devices
are commonly used in burglar alarms, lights that come on when
people approach, and some CCTV cameras.  

There are three connectors on the bottom of the PIR, marked
VCC, OUT and GND. A 5-volt power supply is applied to VCC
pin, with GND pin going to ‘ground’. The OUT pin will ‘go high’
when movement is detected.  You will notice two
‘potentiometers’ on the bottom that are used for adjusting the
sensitivity (marked Sx) and how long the sensor pin stays high
when it senses motion (marked Tx).  To make the PIR more
sensitive, turn the Sx potentiometer clockwise with a small
screwdriver. To start with, you should set it to the middle.  You
may want to experiment with the Tx potentiometer once you
have written the code. However, to start with you should turn it
all the way anti-clockwise to make the PIR report movement for
the shortest time.

The diagram below shows how to connect the PIR sensor. The
PIR circuit is much simpler than the other circuits, mainly
because the sensor contains a large amount of its own circuitry.

Power is supplied from the 5v pin, and not the 3.3v that the
other circuits use.

Use three jumper wires to connect the PIR pins to the
breadboard. The power input pin is marked ‘VCC’, the negative
marked with ‘GND‘, and the sensor pin with ‘OUT’. A second
jumper wire connects pin 17 to the breadboard.

	
	

Open the Python IDLE editor and type in the following code:

Import Python header files
import RPi.GPIO as GPIO
import time

Set the GPIO naming convention
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
Set a variable to hold the GPIO Pin identity
PinPIR = 17
print("PIR Module Test (CTRL-C to exit)")
Set pin as input
GPIO.setup(PinPIR, GPIO.IN)
Variables to hold the current and last
states
Current_State = 0
Previous_State = 0
try:
 print("Waiting for PIR to settle ...")
 # Loop until PIR output is 0
 while GPIO.input(PinPIR)==1:
 Current_State = 0
 print(" Ready")
 # Loop until users quits with CTRL-C
 while True:
 # Read PIR state
 Current_State = GPIO.input(PinPIR)
 # If the PIR is triggered
 if Current_State==1 and
Previous_State==0:
 print(" Motion detected!")
 # Record previous state
 Previous_State=1
 # If the PIR has returned to ready
state
 elif Current_State==0 and
Previous_State==1:

 print(" Ready")
 Previous_State=0
 # Wait for 10 milliseconds
 time.sleep(0.01)
except KeyboardInterrupt:
 print(" Quit")
Reset GPIO settings
GPIO.cleanup()
	

Once complete, save the file.

Running the Code

Select the Run Module menu option, under the Run menu item.
Alternatively, you can just press the F5 key.

When the PIR detects movement, it will print ‘Motion detected!’
on the screen once and once only. If the movement stops it will
return to the steady state.

How the Code Works

The code above introduces a few concepts that may not have
been used in the previous worksheets. Let’s take a look at
some parts of the code that you may not be familiar with. The
whole code is not repeated in full below, just the parts that are
of interest.

PinPIR = 17
A variable, PinPIR, is being used to store the pin number of the
PIR sensor pin. This allows you to change which pin is used in
only one place in the code, and makes it easier to code by not
having to remember the pin number, just the pin name you
have given it.

try:	
The main code is contained within a try.except construct. The

code within the try will continue to be run until the
KeyboardInterrupt keys are pressed. This is a special key
combination that is defined within Python that will interrupt a
program when pressed. For the Raspberry Pi, this is ‘Ctrl + c’,
which is pressing the Ctrl key down and pressing the ‘c’ key.

while GPIO.input(PinPIR)==1:
 Current_state = 0

In the first while loop after the try, the code first waits until the
PIR does not see any movement. The Current_State variable is
set to 0, indicating no movement.

while True:
The code then enters an ‘eternal’ loop; while True: means that
the loop will always run unless the interrupt keys are pressed.

Current_State = GPIO.input(PinPIR)

The Current_State is then set to the value of the input pin. If
there is no movement, this will be 0. If there is movement, this
will be 1.

#If the PIR is triggered
if Current_State==1 and Previous_State==0:
 print(“Motion detected!”)
 #Record previous state
 Previous_State=1

If the PIR has been triggered, but on the last check it was not,
then you will be notified by the message “Motion detected!”.
The ‘previous state’ will then be set to show that motion has
been detected.

elif Current_State==0 and Previous_State==1:
 print =(" Ready")
 Previous_State=0

If the current state shows that there is no movement, but the
previous state shows that there was movement, then you will
be notified that everything is still around the sensor with the

message “Ready”.

	

#Wait for 10 milliseconds
time.sleep(0.01)

The code then sleeps for 0.01 of a second. This is here to stop
the code from continuously flipping between seeing movement
and not seeing movement.

Except KeyboardInterrupt:
 print(“Quit”)

 #Reset GPIO settings
 GPIO.cleanup()

If the interrupt keys are pressed (Ctrl+c), the program will end,
but before it does, the GPIO pins will be reset to their default
state.

MICROBITS
You will need two Microbits. We borrowed Microbits from our Code Club
but you can buy them from websites such as Pimoroni for £13 each

Amending the Code to send a message to an
Attached Microbit
We had to import serial so the Raspberry pi could send a message
by USB to an attached Microbit.

We then had to give instructions on how they would communicate by
adding these lines of code:

#set up usb port communication
PORT = "/dev/ttyACM0
BAUD = 115200
s = serial.Serial(PORT)
s.baudrate = BAUD
s.parity = serial.PARITY_NONE
s.databits = serial.EIGHTBITS

s.stopbits = serial.STOPBITS_ONE
s.readline()

We then added the following code to when the PIR sensed movement so
that as well as print motion detected so we knew it had worked it send a
message ‘hello’ to the Microbit.

s.write("hello".encode('utf-8'))

The Raspberry Pi complete code with all parts
included.
Import Python header files
import RPi.GPIO as GPIO
import time
import serial
Set the GPIO naming convention
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
Set a variable to hold the GPIO Pin identity
PinPIR = 17
#set up usb port communication
PORT = "/dev/ttyACM0"
BAUD = 115200
s = serial.Serial(PORT)
s.baudrate = BAUD
s.parity = serial.PARITY_NONE
s.databits = serial.EIGHTBITS
s.stopbits = serial.STOPBITS_ONE
s.readline()

print("PIR Module Test (CTRL-C to exit)")
Set pin as input
GPIO.setup(PinPIR, GPIO.IN)
Variables to hold the current and last
states
Current_State = 0
Previous_State = 0

try:
 print("Waiting for PIR to settle ...")
 # Loop until PIR output is 0
 while GPIO.input(PinPIR)==1:
 Current_State = 0
 print(" Ready")
 # Loop until users quits with CTRL-C
 while True:
 # Read PIR state
 Current_State = GPIO.input(PinPIR)
 # If the PIR is triggered
 if Current_State==1 and
Previous_State==0:
 print(" Motion detected!")
 s.write("hello".encode('utf-8'))
 time.sleep(1)

 # Record previous state
 Previous_State=1
 # If the PIR has returned to ready
state
 elif Current_State==0 and
Previous_State==1:
 print(" Ready")
 Previous_State=0
 # Wait for 10 milliseconds
 time.sleep(0.01)
except KeyboardInterrupt:
 print(" Quit")
Reset GPIO settings
GPIO.cleanup()

Microbit receiving Raspberry Pi Message and
sending new message to unconnected
Microbit
We created this code in Mu, saved it and then flashed it to the attached
Microbit.

from microbit import *
import radio
radio.on()

visitor = ('caller')
caller = {'hello': visitor}

def get_sensor_data():

 a, b = button_a.was_pressed(),
button_b.was_pressed()

 print(a, b)

while True:
 sleep(500)
 get_sensor_data()

 try:
 bytestring = uart.read()
 icon = caller[(str(bytestring))[2:-1]
 display.show(icon)
 radio.send("caller")

 except:
 pass
 display.clear()

This code will read the message sent by the Raspberry Pi by USB and if
the message reads ‘Hello’ then it will display ‘Caller’ on itself.

The radio.send code line then sends a message “caller” to another
Microbit which has already been flashed with a receive code and is
connected to a battery pack.

Unattached Microbit receiving message from
attached Microbit
We then created this code and flashed it to a separate microbit, which
was powered by a battery pack. This microbit can then be worn and it
receives the message from the other attached Microbit by radio.

from microbit import *
from microbit import display
import radio

radio.on()
while True
 received_text = radio.receive()
 if (received_text == 'caller'):
 display.scroll("caller")
 sleep(100
 else:
 display.clear()

When it receives the message ‘caller’ it displays caller.

Tinkercad

https://www.tinkercad.com
You can sign up for a free account to design 3D objects. We have
Google Education accounts so we used this to sign up. The website has
lots of tutorials to show you how to create objects.

Once we had created a box we downloaded the file as STL as this is the
type of file our 3D printer prints with.

Checking in Netfabb

https://www.netfabb.com/try-netfabb-premium-
now
Sometimes our designs do not always print and so we downloaded this
software, we only have the basic version. This has an automatic repair
button which checks there are no holes etc and corrects any faults.

We then export the repaired part in STL.

3D Printing

http://robox.cel-uk.com
We have a Robox 3D printer. It comes with it’s own AutoMaker software
that we add our STL model to and it confirms whether it can print the
item. If all is well, it will print our object.

Dooreen in Action
You need to make sure the correct Mu code has been flashed to the
correct Microbit.

Run the Raspberry Pi Python program and it will continue to respond if
motion is detected until you quit.

